Abstract

In this paper, we propose a new regularized quasi-Newton method for unconstrained optimization. At each iteration, a regularized quasi-Newton equation is solved to obtain the search direction. The step size is determined by a non-monotone Armijo backtracking line search. An adaptive regularized parameter, which is updated according to the step size of the line search, is employed to compute the next search direction. The presented method is proved to be globally convergent. Numerical experiments show that the proposed method is effective for unconstrained optimizations and outperforms the existing regularized Newton method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.