Abstract
Mathematical programs with equilibrium (or complementarity) constraints (MPECs) form a difficult class of optimization problems. The feasible set has a very special structure and violates most of the standard constraint qualifications. Therefore, one typically applies specialized algorithms in order to solve MPECs. One very prominent class of specialized algorithms are the regularization (or relaxation) methods. The first regularization method for MPECs is due to Scholtes [SIAM J. Optim., 11 (2001), pp. 918--936], but in the meantime, there exist a number of different regularization schemes which try to relax the difficult constraints in different ways. However, almost all regularization methods converge to C-stationary points only, which is a very weak stationarity concept. An exception is a recent method by Kadrani, Dussault, and Benchakroun [SIAM J. Optim., 20 (2009), pp. 78--103], whose limit points are shown to be M-stationary. Here we provide a new regularization method which also converges to M-sta...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.