Abstract

We extend the convergence analysis of a smoothing method [M. Fukushima and J.-S. Pang (2000). Convergence of a smoothing continuation method for mathematical programs with complementarity constraints. In: M. Théra and R. Tichatschke (Eds.), Ill-posed Variational Problems and Regularization Techniques, pp. 99–110. Springer, Berlin/Heidelberg.] to a general class of smoothing functions and show that a weak second-order necessary optimality condition holds at the limit point of a sequence of stationary points found by the smoothing method. We also show that convergence and stability results in [S. Scholtes (2001). Convergence properties of a regularization scheme for mathematical programs with complementarity constraints. SIAM J. Optim., 11, 918–936.] hold for a relaxation problem suggested by Scholtes [S. Scholtes (2003). Private communications.] using a class of smoothing functions. In addition, the relationship between two technical, yet critical, concepts in [M. Fukushima and J.-S. Pang (2000). Convergence of a smoothing continuation method for mathematical programs with complementarity constraints. In: M. Théra and R. Tichatschke (Eds.), Ill-posed Variational Problems and Regularization Techniques, pp. 99–110. Springer, Berlin/Heidelberg; S. Scholtes (2001). Convergence properties of a regularization scheme for mathematical programs with complementarity constraints. SIAM J. Optim., 11, 918–936.] for the convergence analysis of the smoothing and regularization methods is discussed and a counter-example is provided to show that the stability result in [S. Scholtes (2001). Convergence properties of a regularization scheme for mathematical programs with complementarity constraints. SIAM J. Optim., 11, 918–936.] cannot be extended to a weaker regularization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.