Abstract

AbstractA new model reduction method is presented for moment‐resisting frames with viscous dampers. The proposed method considers (1) the interactive effect of added damping between the horizontal‐vertical directions and (2) the direct effect with regard to the vertical direction different from the conventional static condensation method. When brace‐type dampers are treated, these effects cannot be neglected originally. The proposed method gives a better correspondence of the fundamental eigenmode with that of the non‐reduced moment frame than the static condensation method. In addition, the proposed reduced model can accurately evaluate the maximum interstory drifts of the non‐reduced moment frame. The proposed model reduction method is formulated in the frequency domain. The frequency dependency of the stiffness matrix and the damping matrix of the reduced model is investigated. The influences of the added damping matrix by viscous dampers on the natural circular frequencies, the damping ratios and the participation vectors are also investigated. Finally, it is demonstrated through a numerical example that the displacement‐based optimization of the damper allocation can be accurately and rapidly conducted by using the reduced models throughout the optimization process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.