Abstract
In this paper, a new radial basis function network-based model predictive control (RBFN-MPC) is presented to control the steam temperature of a power plant boiler. For the first time in this paper the Laguerre polynomials are used to obtain local boiler models based on different load modes. Recursive least square (RLS) method is used as observer of the Laguerre polynomials coefficient. Then a new locally recurrent radial basis function neural network with self-organizing mechanism is used to model these local transfer function and it used to estimate the boiler future behavior. The recurrent RBFN tracks system is dynamic online and updates the model. In this recurrent RBFN, the output of hidden layer nodes at the past moment is used in modelling, So the boiler model behaves exactly like a real boiler. Various uncertainties have been added to the boiler and these uncertainties are immediately recognized by the recurrent RBFN. In the simulation, the proposed method has been compared with traditional MPC (based on boiler mathematical model). Simulation results showed that the recurrent RBFN-based MPC perform better than mathematical model-based MPC. This is due to the neural network's online tracking of boiler dynamics, while in the traditional way the model is always constant. As the amount of uncertainty increases, the difference between our proposed method and existing methods can clearly be observed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.