Abstract
This paper deals with a new proposed three port converter structure dedicated for two-input source hybrid systems especially for fuel cell applications. This converter is made up of three-phase triple active bridges which are galvanically isolated by means of three single phase high frequency transformers. The present converter integrates a fuel cell as the primary power source with a battery that stores energy, harnessing the unique benefits of both sources to deliver reliable power to a DC load through a single power conversion stage. In order to control the power flow between the ports, a phase shift control technique has been carried out to generate the control signals of the load and battery side bridges in reference with those of the fuel cell bridge. A detailed analysis of the proposed converter has been presented in this paper. A novel proposed energy management algorithm has been developed. This algorithm provides a robust solution for managing and distributing power flow between the converter's ports, ensuring an optimal balance of power delivery. The algorithm has been rigorously validated through simulations and experimental test, using Dspace 1104 board.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: International journal of electrical and computer engineering systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.