Abstract
Magnetism dominates the structure and dynamics of the solar corona. Current theories suggest that it may also be responsible for coronal heating. Despite the importance of the magnetic field in the physics of the corona and despite the tremendous progress made recently in the remote sensing of solar magnetic fields, reliable measurements of the coronal magnetic field strength and orientation do not exist. This is largely due to the weakness of coronal magnetic fields, previously estimated to be on the order of 10 G, and the difficulty associated with observing the extremely faint solar corona emission. Using a very sensitive infrared spectropolarimeter to observe the strong near-infrared coronal emission line Fe XIII λ10747 above active regions, we have succeeded in measuring the weak Stokes V circular polarization profiles resulting from the longitudinal Zeeman effect of the magnetic field of the solar corona. From these measurements, we infer field strengths of 10 and 33 G from two active regions at heights of h = 0.12 R☉ and h = 0.15 R☉, respectively. We expect that this measurement technique will allow, in the near future, the routine precise measurement of the coronal magnetic field strength with application to many critical problems in solar coronal physics.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have