Abstract

The implementation of regular iterative algorithms (RIAs) in important scientific fields such as image processing, computer arithmetic, cryptography and their implementation in processor arrays architectures, has been extensively studied over the last three decades. Numerous design methodologies and tools have been proposed, mostly targeting custom very large scale integration (VLSI) chips. The advent of field-programmable gate arrays (FPGAs) has attracted many researchers to incorporate previously acquired knowledge and experience in designing VLSI chips, to this new technology. This paper addresses the issue of the implementation of regular algorithms into FPGAs and presents a novel design tool for the implementation of RIAs, formulated as dependence graphs (DGs), on systolic arrays. Furthermore, a platform scheme for the systolic arrays hardware realization is proposed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call