Abstract

As Field programmable Gate Array (FPGA) technology has steadily improved, FPGAs are now viable alternatives to other technology implementations for high-speed classes of digital signal processing (DSP) applications. In particular, radar front-end signal processing, an application formerly dominated by custom very large scale integration (VLSI) chips, may now be a prime candidate for migration to FPCA technology. As this paper demonstrates, current FPGA devices have the power and capacity to implement a FIR filter with the performance and specifications of an existing, in-system, front-end signal processing custom VLSI chip. A 512-tap, 18-bit FIR filter was built that could achieve sample rates of 5 MHz (with a clock rate of at least 40 MHz) using Xilinx Virtex FPGA technology, and was demonstrated through simulation. Distributed arithmetic was determined to be the most optimal structure for a FPGA FIR design, although future research may show that fast FIR algorithms or filtering in the frequency domain might give better results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call