Abstract
We present new charge-coupled device (CCD) photometry for the triple star EF Draconis, obtained in 2009 and 2011. Using the updated Wilson-Devinney program, the photometric solutions were deduced from two sets of light curves. The results indicate that EF Dra is an A-type W UMa binary with a contact degree of f = 46.7%(±0.6%) and a third light of l3 ≃ 1.5%. Through analyzing the O — C curve, it is found that the orbital period shows a long-time increase with a light-time orbit. The period, semi-amplitude and eccentricity of the third body are Pmod = 17.20(±0.18) yr, A = 0.0039d(±0.0002d) and e = 0.49(±0.02) respectively. This kind of tertiary companion may extract angular momentum from the central system. The orbital period of EF Dra secularly increases at a rate of dP/dt = +3.72(±0.07) × 10-7 d yr-1, which may be interpreted by mass transfer from the less massive to the more massive component. As period increases, the separation between components may increase, which will cause the contact degree to decrease. With mass transferring, the spin angular momentum will increase, while the orbital angular momentum will decrease. Only if the contact configuration would merge at could this kind of deep-contact binary with period increasing, such as EF Dra, evolve into a rapidly-rotating single star.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.