Abstract

The stable polymorph of MnTiO3 at room temperature and pressure has the ilmenite structure. At high temperatures and pressures, MnTiO3 ilmenite transforms to a LiNbO3 structure through a cation reordering process (Ko and Prewitt 1988). Single crystals of both phases have been studied with X-ray diffraction to 5.0 GPa. We have obtained the first experimental verification of the close relationship between the LiNbO3 and perovskite structures, first postulated by Megaw (1968). MnTiO3 with the LiNbO3 structure (MnTiO3 II) transforms directly to an orthorhombic perovskite structure (MnTiO3 III) between 2.0 and 3.0 GPa. The transition involves a change of volume of -5%, is reversible and has pronounced hysteresis. Only pressure is required to drive the transition because it involves no breaking of bonds; it simply involves rotation of the [TiO6] octahedra about their triad axes accompanied by displacement of the Mn cations to the distorted twelve-coordinated sites formed by the rotations. An unusual aspect of this transition is that twinned MnTiO3 II crystals transform to untwinned MnTiO3 III crystals with increasing pressure. The twin plane of MnTiO3 II, $$\left( {10\bar 1\bar 2} \right)$$ , corresponds to the (001) mirror plane of the orthorhombic perovskite structure. MnTiO3 III examined at 4.5 GPa is very distorted from the ideal cubic perovskite structure. The O(2)-O(2)-O(2) angle describing the tilting in the ab plane is 133.3(7)°, in contrast to 180° for a cubic perovskite and the O(2)-O(2)-O(2) angle describing the tilting in the ac plane is 109.3(4)°, as opposed to 90° in a cubic perovskite.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.