Abstract

Recently, Hazar and Sarıgöl have defined and studied the series space |C₋₁|_{p} for 1≤p<∞ in [1]. The aim of this study is to introduce a new paranormed space |C₋₁|(p), where p=(p_{k}) is a bounded sequence of positive real numbers, which extends the results of Hazar and Sarıgöl in [1] to paranormed space. Besides this, we investigate topological properties and compute the α-,β-, and γ duals of this paranormed space. Finally, we characterize the classes of infinite matrices (|C₋₁|(p),μ) and (μ,|C₋₁|(p)), where μ is any given sequence spaces

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.