Abstract

We investigate the chaotic behaviour of slip pulses that propagate in a spring block slider model with velocity weakening friction by numerically solving a computationally intensive set of n coupled non-linear equations, where n is the number of blocks. We observe that the system evolves into a spatially heterogeneous pre-stress after the occurrence of a sufficient number of events. We observe that, although the spatiotemporal evolution of the amplitude of a slip pulse in a single event is surprisingly complex, the geometric description of the pulses is simple and self-similar with respect to the size of the pulse. This observation allows us to write an energy balance equation that describes the evolution of the pulse as it propagates through the known pre-stress. The equation predicts the evolution of individual ruptures and reduces the computational time dramatically. The long-time solution of the equation reveals its multiscale nature and its potential to match many of the long-time statistics of the original system, but with a much shorter computational time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.