Abstract

Wear has been the primary failure mode affecting the long-term performance of orthopaedic implants. The tribological evaluation of orthopaedic biomaterials in vitro is regarded as an essential material characterization before implantation. In this paper, a new biotribometer of pin-on-disk type, the Ortho-POD, was designed and built for the biotribological tests of orthopaedic biomaterials. The primary goal of developing this Ortho-POD is to simulate and predict the wear properties of orthopaedic biomaterials in clinical application, especially in the form of hip, knee and spine prostheses. This 6-station Ortho-POD, including a pin guiding module, a motion module, a framework module and a loading module, provides multidirectional slide track shapes and variable load via a computer-controlled programmer. A frequency controller and heating system were assembled in the Ortho-POD so as to offer a wide range of testing conditions. Keywords-biotribology; wear; orthopaedic biomaterial; pin on disk; wear testing

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call