Abstract
Rapid and accurate ambiguity resolution is the core of high-precision precise point positioning (PPP) data processing. However, the ambiguity parameters in PPP observation models are easily affected by atmospheric residual and gross errors, which lead to the probability of successfully fixing decreases and computational burden increases in full ambiguity resolution. Therefore, an increasing number of partial ambiguity resolution (PAR) strategies have been proposed. The selection of the optimal subset of PAR is crucial in this method. The traditional optimal subset selection method of PAR commonly leads to a single judgment criterion and weakened geometric configuration strength because the satellites with low elevation angles are often easily eliminated during the optimal subset selection. In this paper, a multi-factor constrained optimal subset selection method for PAR was proposed, which incorporates the ambiguity variance, the ambiguity dilution of precision (ADOP), satellite position dilution of precision (PDOP) and ratio test values. In order to verify the feasibility of the proposed optimal subset selection method, PAR tests under two schemes were performed for GPS/Galileo based on the static observation data of 15 Multi-GNSS Experiment (MGEX) tracking stations. The results show that, compared with the ambiguity variance sorting method, the proposed subset selection method can further improve the accuracy of the coordinate solution and the strength of geometric figure positioning. The average root mean square of the coordinate residuals is found to decrease by about 12.90%, 6.83% and 9.39% in the eastern, northern and vertical directions, respectively. The increase in the fixed epoch rate ranged from 0.87% to 33.33%, with an average of about 8.71%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.