Abstract

A new method for the calculation of Shutdown Dose Rates (SDDR) has been developed, the Novel-1-Step (N1S) method. The new method retains the benefits of only requiring a single radiation transport calculation, as in the use of the direct-1-step (D1S) method, while removing the need for pre-calculations to determine dominant nuclides and time correction factors. The N1S method uses a time dependent source and decay data for all nuclides. When reactions in the transport occur leading to unstable daughter nuclide, the correct contribution of photon radiation from all the decay products of a nuclide are calculated with no need for additional external activation calculations. Weights of these decay photons are calculated for each decay time of interest and are analytically determined based on the solutions to the Bateman equations.The N1S method has been implemented into MCNP and preliminary verification calculations performed. These calculations included the FNG ITER shutdown dose rate benchmark and the ITER SDDR cross comparison. For the FNG ITER SDDR benchmark the N1S method showed good agreement, within experimental error, for the first campaign apart from the first decay time where a C/E value of 1.34 was obtained. This overestimation was shown to be due to the decay of 64Cu inside the copper cup of the neutron generator. For the second campaign the N1S method showed an under prediction of up to 20% at short decay times and an over prediction up to 20% at longer decay times. These times are dominated by 56Mn and 58Co respectively and it is likely the difference is due to under and over predictions in the reaction rates leading to these nuclides. The ITER cross comparison showed good agreement between the N1S method and MCR2S (and by association other D1S and R2S codes). Differences seen in the results were shown to be due to difference in the calculated reaction rates using EAF2010, TENDL2019 and FENDL3.2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.