Abstract
We propose a method for solving three-dimensional boundary value problems for Laplace’s equation in an unbounded domain. It is based on non-overlapping decomposition of the exterior domain into two subdomains so that the initial problem is reduced to two subproblems, namely, exterior and interior boundary value problems on a sphere. To solve the exterior boundary value problem, we propose a singularity isolation method. To match the solutions on the interface between the subdomains (the sphere), we introduce a special operator equation approximated by a system of linear algebraic equations. This system is solved by iterative methods in Krylov subspaces. The performance of the method is illustrated by solving model problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.