Abstract

We develop and experimentally study the algorithms for solving three-dimensionalmixed boundary value problems for the Laplace equation in unbounded domains. These algorithms are based on the combined use of the finite elementmethod and an integral representation of the solution in a homogeneous space. The proposed approach consists in the use of the Schwarz alternating method with consecutive solution of the interior and exterior boundary value problems in the intersecting subdomains on whose adjoining boundaries the iterated interface conditions are imposed. The convergence of the iterative method is proved. The convergence rate of the iterative process is studied analytically in the case when the subdomains are spherical layers with the known exact representations of all consecutive approximations. In this model case, the influence of the algorithm parameters on the method efficiency is analyzed. The approach under study is implemented for solving a problem with a sophisticated configuration of boundaries while using a high precision finite elementmethod to solve the interior boundary value problems. The convergence rate of the iterations and the achieved accuracy of the computations are illustrated with some numerical experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.