Abstract

Herein we proposed an ecology model, based on a non-steady-state mass balance (16S rRNA MiSeq reads normalized by volatile suspended solids), to quantify microbiome responses to disturbances in wastewater bioreactors. Rather than focusing on the most abundant microbial groups commonly used in the literature, the goal of the model was to identify active species within the community. The model incorporated the temporal changes of operational taxonomic units following a disturbance, through considering the density and type of genotypes in the influent entering the bioreactor, in the effluent leaving the bioreactor, growing in the bioreactor, and in the waste sludge discharged from the bioreactor continuously or instantaneously, as well as the prior microbial community and the sludge characteristics. One application of this model demonstrated that significant differences existed between the key populations responding to an increasing organic loading rate and the dominant species in a high-rate thermophilic upflow anaerobic sludge blanket reactor.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call