Abstract

The feasibility of using an up-flow anaerobic sludge blanket (UASB) reactor followed by activated sludge (AS system) for the treatment of wastewater discharged from dairy factory was explored. The UASB reactor was operated at a hydraulic retention time (HRT) of 24 h and organic loading rates (OLRs) ranging from 1.9 to 4.4 kgCOD/m 3.d. The average total chemical oxygen demand (COD total) and total biological oxygen demand (BOD 5total) concentrations of the UASB reactor effluent were 1385 and 576 mg/l, corresponding to percentage removal of 69% and 79%, respectively. Total suspended solids (TSS) and volatile suspended solids (VSS) removal averaged above 72% and 75%, respectively. Residual phosphorous and oil and grease concentrations of the UASB reactor effluent were 8.2 and 44 mg/l, corresponding to percentage removal values of 63% and 83%, respectively. This good performance could be attributed to the relatively long sludge residence time (SRT = 76 d) imposed to the reactor. Total and faecal coliform counts were reduced in the treated effluent by a value of 1.07 and 0.9 log 10, respectively. The net sludge yield coefficient was found to be 0.2 g VSS per g COD total removed per day, corresponding to 20% of the total influent COD imposed to the UASB reactor. The volatile solids / total solids (VS/TS) ratio of 0.66 of excess sludge revealed its good quality. Preliminary batch experiments of the AS system treating UASB reactor effluent indicated first-order removal kinetics between total organic carbon (TOC) and contact time. The TOC removal reached 80%, resulting in only 47 mg/l in the final effluent at a HRT of 2.0 h. Accordingly, the AS system was operated at a HRT of 2.0 h. The system achieved a substantial reduction of COD total, BOD 5 total, TSS and oil and grease resulting effluent quality with residual values of only 35.0, 7.0, 14.0 and 2.8 mg/l, respectively. The geometric mean of total and faecal coliform counts was reduced by a value of 1.28 and 1.64 log 10, respectively. Based on these results, it is recommended to use of an integrated system consisting of a UASB reactor followed by the AS system for the treatment of a combined dairy and domestic wastewater to produce a good effluent quality complying with the standards for discharge into agricultural drains.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call