Abstract

In view of the problem that dissipative chaos has attractors and is easy to be attacked by reconstruction, which leads to the security defects of encryption algorithm based on dissipative chaos, we design a new general form of n-dimensional conservative chaos according to the generalized Hamiltonian system. Taking four-dimensional (4D) as an example, numerical verification and performance analysis show that the conservative chaos has excellent chaotic characteristics such as wide ergodicity, no attractors, no chaotic degradation, and it can resist reconstruction and other attacks. Based on this 4D conservative chaos, we propose a new image encryption algorithm, which includes the plaintext related dynamic scrambling method and the dynamic diffusion mechanism of quadrilateral rule (MQR). Moreover, the initial values of the system are controlled by the external key stream and the internal key stream, so that the generation of ciphertext information are closely related with that of plaintext information, part of the ciphertext information, pseudo-random sequence and the key stream, which can increase the ability of the algorithm to resist plaintext and other attacks. Experimental simulation and performance analysis show that the encryption algorithm has better security and real time communication.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call