Abstract
Recently, although advances were made on modeling multivariate count data, existing models really has several limitations: (i) The multivariate Poisson log-normal model (Aitchison and Ho, 1989) cannot be used to fit multivariate count data with excess zero-vectors; (ii) The multivariate zero-inflated Poisson (ZIP) distribution (Li etal., 1999) cannot be used to model zero-truncated/deflated count data and it is difficult to apply to high-dimensional cases; (iii) The Type I multivariate zero-adjusted Poisson (ZAP) distribution (Tian etal., 2017) could only model multivariate count data with a special correlation structure for random components that are all positive or negative. In this paper, we first introduce a new multivariate ZAP distribution, based on a multivariate Poisson distribution, which allows the correlations between components with a more flexible dependency structure, that is some of the correlation coefficients could be positive while others could be negative. We then develop its important distributional properties, and provide efficient statistical inference methods for multivariate ZAP model with or without covariates. Two real data examples in biomedicine are used to illustrate the proposed methods.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have