Abstract

A new strategy to approach multiresponse optimization in conjunction to a D-optimal design for simultaneously optimizing a large number of experimental factors is proposed. The procedure is applied to the determination of biogenic amines (histamine, putrescine, cadaverine, tyramine, tryptamine, 2-phenylethylamine, spermine and spermidine) in swordfish by HPLC-FLD after extraction with an acid and subsequent derivatization with dansyl chloride. Firstly, the extraction from a solid matrix and the derivatization of the extract are optimized. Ten experimental factors involved in both stages are studied, seven of them at two levels and the remaining at three levels; the use of a D-optimal design leads to optimize the ten experimental variables, significantly reducing by a factor of 67 the experimental effort needed but guaranteeing the quality of the estimates. A model with 19 coefficients, which includes those corresponding to the main effects and two possible interactions, is fitted to the peak area of each amine. Then, the validated models are used to predict the response (peak area) of the 3456 experiments of the complete factorial design. The variability among peak areas ranges from 13.5 for 2-phenylethylamine to 122.5 for spermine, which shows, to a certain extent, the high and different effect of the pretreatment on the responses. Then the percentiles are calculated from the peak areas of each amine. As the experimental conditions are in conflict, the optimal solution for the multiresponse optimization is chosen from among those which have all the responses greater than a certain percentile for all the amines. The developed procedure reaches decision limits down to 2.5 μg L−1 for cadaverine or 497 μg L−1 for histamine in solvent and 0.07 mg kg−1 and 14.81 mg kg−1 in fish (probability of false positive equal to 0.05), respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.