Abstract
Equal Salt Deposit Density (ESDD) is a main factor to classify contamination severity and draw pollution distribution map. To cope with the problems existing in the ESDD predicting by multivariate linear regression (MLR), back propagation (BP) neural network and least squares support vector machines (LSSVM), a nonlinear combination forecasting model based on wavelet neural network (WNN) for ESDD is proposed. The model is a WNN with three layers, whose input layer has three neurons and output layer has one neuron, namely, regarding the ESDD forecasting results of MLR, BP and LSSVM as the inputs of the model and the observed value as the output. In the interest of better reflection of the influence of each single forecasting model on ESDD and increase of the accuracy of ESDD prediction, the paper uses Morlet wavelet to construct WNN, error backpropagation algorithm to train the network and genetic algorithm to determine the initials of the parameters. Simulation results show that the accuracy of the proposed combination ESDD forecasting model is higher than that of any single model and also higher than that of traditional linear combination forecasting (LCF) model. The model provides a new feasible way to increase the accuracy of pollution distribution map of power network.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.