Abstract

• A new dynamic benchmark suite with configurable predictability degree of the optima. • Severity, direction and randomness of the optima’s movement, can be chosen. • Introduction of a new performance metric for prediction-driven optimisers. • Seven state-of-the-art evolutionary algorithms for dynamic optimisation are assessed. Prediction in evolutionary dynamic optimization (EDO), such as predicting the movement of optima, or when and how an environment will change, is a topic that is still under investigation and presents unsolved challenges. A few studies approach prediction based on re-initialising a population or requirement satisfaction problems such as Robust Optimization Over Time. The benchmark problems in these studies inherently use randomly changing parameters and therefore such randomness may make it difficult to compare these algorithms with other EDO approaches. In this paper, we introduce a new benchmark, called Moving Peaks Benchmark with Attractors, which incorporates an attractor heuristic that attracts peaks to a certain location in the environment into the moving peaks problem. The proposed benchmark is fully flexible where the dynamics of the attractors and the rate at which a peak is attracted to such attractors can be modified. By adjusting these characteristics, certain styles of movements can be achieved by a peak. We also introduce a new performance measure that focuses on the comparison of algorithms that use prediction. Seven EDO algorithms based on different working logics are chosen to give a wide representation of the state-of-the-art in this area. We argue that having predictable characteristics in the benchmark problem is more adequate for studying the performances and behaviours of those algorithms that embed prediction mechanisms. Experimental results obtained with the proposed benchmark show it’s suitability for the EDO domain as all algorithms featuring prediction capabilities display higher accuracy than their competitors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.