Abstract

A motor model that consists of two Maxwell elements with a force generator and one Voigt element is proposed in this paper. The motor model can achieve a hyperbolic force–velocity relation when we alter weight functions applied to the Maxwell elements and the force generator. Rate coefficients are introduced to determine the weight function and to improve the motor performance and the time course of the motor force. The weight functions are used as a controller of the motor. We assume that the mechanical impulse applied to the motor affects the rate coefficients and found that the amount of the mechanical impulse is related to the amount of force depression following motor shortening and to the amount of force enhancement following motor stretching. The time courses of the motor force following shortening and stretching quantitatively resemble those in other muscle experiments. The maximum energy efficiency of the motor that we obtained was 50% with an ATP hydrolysis type and 25% with an AC–DC motor type.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.