Abstract

In survey statistics, estimating and reducing population variation is crucial. These variations can occur in any sampling design, including stratified random sampling, where stratum weights may increase the variance of estimators. Calibration techniques, which use additional auxiliary information, can help mitigate this issue. This paper examines three calibration-based estimators—calibration variance, calibration ratio, and calibration exponential ratio estimators—within the framework of stratified random sampling. The study generates data from normal, gamma, and exponential distributions to test these estimators. Results demonstrate that the proposed calibration estimators offer more accurate estimates of population variance and outperform existing methods in estimating population variance under stratified random sampling, providing more accurate and reliable estimates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.