Abstract
Continuous and discrete models [1, 5] for firefighting problems are well-studied in Theoretical Computer Science. We introduce a new, discrete, and more general framework based on a hexagonal cell graph to study firefighting problems in varied terrains. We present three different firefighting problems in the context of this model; for two of which, we provide efficient polynomial time algorithms and for the third, we show NP-completeness. We also discuss possible extensions of the model and their implications on the computational complexity.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have