Abstract

Continuous and discrete models [1, 5] for firefighting problems are well-studied in Theoretical Computer Science. We introduce a new, discrete, and more general framework based on a hexagonal cell graph to study firefighting problems in varied terrains. We present three different firefighting problems in the context of this model; for two of which, we provide efficient polynomial time algorithms and for the third, we show NP-completeness. We also discuss possible extensions of the model and their implications on the computational complexity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.