Abstract

Sponge City concept is emerging as a new kind of integrated urban water systems, which aims to address urban water problems. However, its implementation has encountered a variety of challenges. The lack of an integrated comprehensive model to assist Sponge City planning, implementation and life cycle assessment is one of the most challenging factors. This review briefly analyses the opportunity of existing urban water management models and discusses the limitation of recent studies in the application of current integrated models for Sponge City implementation. Furthermore, it proposes a new Sponge City model framework by integrating four main sub-models including MIKE-URBAN, LCA, W045-BEST, and MCA in which environmental, social, and economic aspects of Sponge City infrastructure options are simulated. The new structure of Sponge City model that includes the sub-model layer, input layer, module layer, output layer, and programing language layer is also illustrated. Therefore, the proposed model could be applied to optimize different Sponge City practices by not only assessing the drainage capacity of stormwater infrastructure but also pays attention to multi-criteria analysis of urban water system (including the possibility of assessing Sponge City ecosystem services for urban areas and watershed areas) as well. Balancing between simplification and innovation of integrated models, increasing the efficiency of spatial data sharing systems, defining the acceptability of model complexity level and improving the corporation of multiple stakeholders emphasizing on possible future directions of a proper Sponge City design and construction model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call