Abstract
We describe a new model for laser-induced retinal damage. Our treatment is prompted by the failure of the traditional approach to accurately describe the image size dependence of laser-induced retinal injuries and by a recently reported study which demonstrated that laser injuries to the retina might not appear for up to 48 h post exposure. We propose that at threshold a short-duration, laser-induced, temperature rise melts the membrane of the melanosomes found in the pigmented retinal epithelial cells. This results in the generation of free radicals which initiate a slow chain reaction. If more than a critical number of radicals are generated then cell death may occur at a time much later than the return of the retina to body temperature. We show that the equations consequent upon this mechanism result in a good fit to the recent image size data although more detailed experimental data for rate constants of elementary reactions is still required. This paper contributes to the current understanding of damage mechanisms in the retina and may facilitate the development of new treatments to mitigate laser injuries to the eye. The work will also help minimize the need for further animal experimentation to set laser eye safety standards.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.