Abstract
A novel mixed-field theory with relatively low number of unknown variables is introduced for bending and vibration analysis of multi-layered composite plates. The presented plate theory is derived from a parametrized mixed variational principle which is introduced recently by the first author. A global-local kinematic with a layer-independent number of variables is assumed for the description of the displacements of the plate. The considered kinematic stratifies the displacement and transverse stress continuity conditions at the mutual interfaces of the layers. It also fulfill the homogenous boundary conditions of the shear stresses on the upper/lower surfaces of the plates without using the shear correction factor. One-unknown variable fields which satisfy a priori the continuity conditions at the adjacent interfaces between layers and the zero boundary conditions on the bounding surfaces are considered for the approximation of the transverse shear stresses. The transverse normal stress along the total thickness of the multi-layered plate is approximated via a quadratic polynomial. The presented mixed-field plate theory has been validated through comparison of the bending and vibration analysis results with those obtained from the three-dimensional (3D) theory of elasticity and the results of the other classical and high-order plate theories.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.