Abstract

Abstract Layerwise finite element models are developed based on a mixed least-squares formulation for both static and free vibration analysis of multilayered composite plates. The models assume a layerwise variable description of displacements, transverse stresses and in-plane strains, taken as independent variables. Altogether, the benefits of this finite element formulation are twofold. First, the layerwise mixed formulation enables the fulfilment of the so-called C z 0 requirements, completely and a priori. Specifically, the interlaminar continuity of displacements and transverse stresses, due to compatibility and equilibrium conditions, are both in the form of C0 continuous functions in the thickness z-direction. Second, the least-squares formulation leads to a variational unconstrained minimization problem, where the finite element approximating spaces can be chosen independently. Therefore, contrary to mixed weak form models, the mixed least-squares models are able to by-pass stability conditions, also known as inf-sup conditions. Ultimately, the model for static analysis yields a symmetric positive definite system of linear equations, whereas the model for free vibration analysis yields a symmetric quadratic eigenvalue problem. The numerical examples show that the models predictive capabilities are in excellent agreement with three-dimensional exact solutions, from very thick to very thin plates, and are shown to be insensitive to shear locking.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call