Abstract

Air quality standards for settleable particulate matter (SPM) are found in many countries around the world. As well known, annoyance caused by SPM can be considered a community problem even if only a small proportion of the population is bothered at rather infrequent occasions. Many authors have shown that SPM cause soiling in residential and urban environments and degradation of materials (eg, objects and surface painting) that can impair the use and enjoyment of property and alter the normal activities of society. In this context, this paper has as main contribution to propose a guidance to establish air quality standards for annoyance caused by SPM in metropolitan industrial areas. To attain this objective, a new methodology is proposed which is based on the nonlinear correlation between the perceived annoyance (qualitative variable) and particles deposition rate (quantitative variable). Since the response variable is binary (annoyed and not annoyed), the logistic regression model is used to estimate the probability of people being annoyed at different levels of particles deposition rate and to compute the odds ratio function which gives, under a specific level of particles deposition rate, the estimated expected value of the population perceived annoyance. The proposed methodology is verified in a data set measured in the metropolitan area of Great Vitória, Espirito Santo, Brazil. As a general conclusion, the estimated probability function of perceived annoyance as a function of SPM has shown that 17% of inhabitants report annoyance to very low particles deposition levels of 5 g/(m2∙30 days). In addition, for an increasing of 1 g/(m2∙30 days) of SPM, the smallest estimated odds ratio of perceived annoyance by a factor of 1.5, implying that the probability of occurrence is almost 2 times as large as the probability of no occurrence of annoyance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.