Abstract

This article proposes a novel methodology for incorporating electrical sheet cutting deterioration in electromagnetic finite-element simulations of energy conversion devices. While the existing methods account for the deterioration in the numerical integration either by increasing the mesh refinement or boosting the Gaussian quadrature order, the proposed method is based on the re-computation of quadrature weights and coordinates for a modeled deterioration, taking its explicit dependency into account. To validate the proposed method, numerical solutions are compared with electromagnetic analytical solutions in a beam geometry. A comprehensive analysis is then performed to evaluate the relative error, considering various model parameters. This analysis leads to a systematic procedure for selecting the optimal element size to achieve desired error levels. The procedure is successfully applied to a transformer geometry, and the computational performance of the proposed method is compared with the existing approaches through a time-stepping analysis. The results show that the proposed method is computationally more efficient than the existing approaches, and it eliminates the need to increase the mesh refinement or boost the order of the quadrature. It can be easily adapted for any type of deterioration profile.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call