Abstract

We obtain the Carnahan–Starling equation for a system of hard spheres using the Euler method of accelerated series convergence. For this purpose, the virial series is transformed into a new series with coefficients that differ slightly from each other, even when considering the eleven currently known virial coefficients. The method of accelerated convergence was applied to this series; it allowed us to obtain the Carnahan–Starling equation. In this work, this equation is derived for the first time using the method of accelerated convergence. It is generalized to accurately reproduce all of the known virial coefficients and the asymptotic behavior of the free energy at high densities. This also makes it possible to describe a metastable region with a high degree of accuracy and to obtain the equation of state for a homogeneous system of hard spheres with the accuracy of a computer experiment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.