Abstract
Roof-type rock burst (RTRB) frequently occurs in the hard, thick roof of working faces, which causes roadway failure, facility damage and even personnel casualties. Previous research results show that mining speed has obvious effects on the rock burst risk and many rock burst accidents are caused by an unreasonable mining speed. To provide a theoretical foundation for the determination of a reasonable mining speed in a specific working face subjected to RTRB, in this study, the key energy strata (KES) principle contraposing the RTRB was proposed, and the criterion of KES was determined by defining the energy release coefficient kc. On this basis, the energy accumulation characteristics of coal and energy release of surrounding rock were analyzed using FLAC3D numerical simulation. Accordingly, to assess the rock burst risk considering the mining speed effect, a new method was proposed and a new energy index Φvi was defined to divide rock burst risk with different mining speeds into four grades. To validate the availability of the KES principle and the new assessment method, they were adopted in a thick, hard roof working face. The application results indicate that the mining speed of 3.6 m/d obtained by the method meets the demands of safe and high-efficiency production.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.