Abstract

We introduce 3D Cauchy-type integrals that extend the classic theory of Cauchy integrals to 3D potential fields. In particular, we show how we are able to evaluate the gravity and gravity gradiometry responses of 3D bodies as surface integrals over arbitrary volumes that may have spatially variable densities. This entirely new method of 3D spatial-domain modeling is particularly suited to the terrain correction of airborne gravity gradiometry (AGG) data. The surface integrals are evaluated numerically on a topographically conforming grid with a resolution equal to the digital elevation model (DEM). Thus, our method directly avoids issues related to prismatic discretization of the digital elevation model, and their associated volume integration. We demonstrate this with a model study for AGG data simulated for a 1 Eö/√Hz system over the Kauring test site in Western Australia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.