Abstract

Neutral-temperature district heating and cooling (NT-DHC) is a recent concept in the district heating sector. The current literature does not directly address the ability to create comprehensive master plans for NT-DHC systems and reliably model their performance. This research presents a new approach for the evaluation and planning of NT-DHC systems. The methodology involves the use of a knapsack optimization algorithm to perform a comprehensive analysis of the conditions that make the NT-DHC solution competitive against individual heating and cooling technologies. The algorithm determines the optimal combination of potential extensions that maximizes overall economic value. The results of a case study, which was conducted in Italy, show that NT-DHC is more suitable in dense urban areas, while air-to-water heat pumps are better suited for low heat density zones. This methodology aims to reduce the risks associated with energy demand and provide more certainty about which areas a network can expand into to be competitive. It is targeted at energy planners, utilities experts, energy engineers, and district heating experts who require assistance and guidance in the planning and early stages of designing a NT-DHC system. This method might enable pre-feasibility studies and preliminary design to determine the opportunities and limitations of a system of this kind from an economic and technological perspective.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call