Abstract
As one of the most important features representing the operating state of power battery in electric vehicles (EVs), state of charge (SOC) and capacity estimation is a crucial assessment index in battery management system (BMS). This paper presents a fusion method of SOC and capacity estimation with identified model parameters. The equivalent circuit model (ECM) parameters are obtained online by variable forgetting factor recursive least squares (VFFRLS), which is based on incremental ECM analysis to respond to the inconsistent rates of parameters variation. The independent open-circuit voltage (OCV) estimation way is designed to reduce the effect of mutual coupling between OCV and ECM parameters. Based on the identified ECM parameters and OCV, a dual adaptive H infinity filter (AHIF) combined with strong tracking filter (STF) is proposed to estimate battery SOC and capacity. A new quadratic function as capacity error compensation is introduced to represent the relationship between capacity and OCV. The adaptive strategy of the AHIF can adjust noise covariance and restricted factor, while the STF can regulate prior state covariance by adding suboptimum fading factor. The results of experiment and simulation show the merits of proposed approach in SOC and capacity estimation.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have