Abstract

The quality of digital medical images plays vital role in Non-invasive imaging techniques, which are suitable for medical diagnosis and treatment. Removal of noise from a noisy image without losing the diagnostic details in medical image is still a challenging task even though several denoising methods have been proposed since past years. The wavelet thresholding ap-proach has been reported to be a highly successful method for image denoising. However, the main problem experienced in wavelet thresholding is smoothening of edges. In order to retain original texture while denoising medical images, several methods have been reported in literature. In this paper, we proposed, a new method based on combination of dual-tree complex wavelet transform (DTCWT) and bilateral filters for denoising of medical images. The proposed models are experimented on standard medical images, like MRI image of knee contaminated with Rician noise, CT Scan image of brain contaminated with Gaussian noise, Ultrasound image of liver contaminated with Speckle noise. The results have shown that denoised images using the proposed ap-proach have better performance in terms of smoothness and ac-curacy compared with existing methods. To assess quality of denoised images the quality metrics, the standard Signal to Noise Ratio (SNR), Universal Image Quality Index (UQI) Mean square error (MSR), and Structural Similarity Index (SSIM) are em-ployed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.