Abstract

Abstract In this study, a cylinder of fine-grained carbon-bonded alumina was pressed uniaxially at high temperatures in an argon atmosphere. The resulting changes in mechanical properties, physical properties and microstructure were described with various techniques. The porosity of the material was found to have decreased significantly, leading to higher density, higher dynamic Young's modulus, higher strength and increased hardness. Additionally, gradients in porosity and hardness were observed that resulted from inhomogeneous temperature distribution during compression. Possibilities and conditions for the production of graded refractory materials can be deduced from the results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call