Abstract

AbstractThe utilization of electric energy is rising in the technological world. Solar PV (photovoltaic) cells convert sunlight into electricity, and sunlight radiation also has heat, reducing the panel's efficiency. The heat should control the limited value or otherwise reduce the panel's performance so that heat is moved to the cooling medium, thus maintaining the heat within the functioning limit. The proposed method is explained by the probability of cooling the monocrystalline and polycrystalline structures used as neem oil through an integrated oil container fitted into the unit's backside—the neem oil acts as phase-changing material (PCM). The solar PV rear side neem oil absorbs the heat of the solar PV panel. The neem oil is not filled in the backside tank completely for the reason that the oil needed some breathing gap. The breathing gap of PCM is to enhance the heat-withstand efficiency. The backside neem oil is replaced every 30 min. As an outcome, the front side of solar PV heat is reduced. Neem oil has not polluted the environment and is thus also used to exchange noxious mineral oils. The neem oil moved from the depository tank to the backside of the unit and together into an additional depositor tank, thus being able to be reused. The proposed method is investigated, and functioning comparison occurs in different PV types, such as monocrystalline and polycrystalline modules, with various kinds of edible oil. Thus, the critical outcomes of the monocrystalline and polycrystalline PV panels are to decrease the panel temperature by 2.29% and 4.34%, respectively, and enhance the efficiency of the PV panels by 15.0% and 17.8%, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.