Abstract

The Stress concentration factor (SCF) induced by the machined surface is more complex than that resulting from macro-geometry discontinuities and has great effect on fatigue life of structure. However, another important parameter, stress gradient (SG), was always ignored. The notch roots or valleys of the wave surface constitute fatigue hot points, where cracks occur, so it is essential to study the SCF and SG at valleys rather than just the root-mean-square SCF variable. In this work, a new method for evaluating the influences of surface topography on fatigue propriety of the random machined surfaces was given. An analytical method using Fourier transformation to simulate machined surface topography is presented. Analytical formulae for SCF and SG for random machined surfaces are derived subjected to a general loading and validate these formulae via finite element method (FEM). Joint probability-distribution function for SCF and SG at the valleys of the random machined-surface topography of the machined sample was obtained after different cycles fatigue test. This method gave us how the surface topography effect the fatigue properties of machined components. Fatigue test of machined sample for a single crystal nickel based alloy were established for validated this method. The obtained results should be useful in studying and evaluating fatigue properties of machined components.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call