Abstract
Tumor-associated macrophages (TAMs) are highly infiltrated in the tumor microenvironment (TME) of colorectal cancer (CRC) and play a vital role in CRC's development as well as prognosis. The required data were obtained from the Gene Expression Omnibus database and The Cancer Genome Atlas. Univariate Cox regression and least absolute shrinkage operator analyses were executed for model construction. TME assessment and immune prediction were performed using the ESTIMATE software package and the single sample genome enrichment analysis algorithm. The results show patients with low a TAMs risk score (TRS) had a better prognosis in both The Cancer Genome Atlas and Gene Expression Omnibus cohorts. Patients with low TRS were more sensitive to 3 chemotherapeutic agents: oxaliplatin, paclitaxel, and cisplatin ( P <0.05). TME assessment showed that the low TRS group had less infiltration of M2 macrophages and regulatory T cells, but CD4 + T cells, NK cells, and dendritic cells occupy a greater proportion of TME. Low TRS group patients have a low StromalScore and ImmuneScore but have high TumorPurity. The immune checkpoint TIM-3 gene HAVCR2 expression was significantly higher in the high TRS group. Finally, we created a nomogram including TRS for forecasting survival, and TRS was significantly associated with the clinical stage of the patients. In conclusion, the TRS serves as a reliable prognostic indicator of CRC; it predicts patient outcomes to immunotherapy and chemotherapy and provides genomic evidence for the subsequent development of modulated TAMs for treating CRC.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have