Abstract

Bacterial evolution is an important study field, biological sequences are often used to construct phylogenetic relationships. Multiple sequence alignment is very time-consuming and cannot deal with large scales of bacterial genome sequences in a reasonable time. Hence, a new mathematical method, joining density vector method, is proposed to cluster bacteria, which characterizes the features of coding sequence (CDS) in a DNA sequence. Coding sequences carry genetic information that can synthesize proteins. The correspondence between a genomic sequence and its joining density vector (JDV) is one-to-one. JDV reflects the statistical characteristics of genomic sequence and large amounts of data can be analyzed using this new approach. We apply the novel method to do phylogenetic analysis on four bacterial data sets at hierarchies of genus and species. The phylogenetic trees prove that our new method accurately describes the evolutionary relationships of bacterial coding sequences, and is faster than ClustalW and the existing alignment-free methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.