Abstract

The Panzhihua layered intrusion hosts a giant V–Ti–iron oxide deposit with ore reserves estimated at 1333 Mt. Laser ablation inductively coupled plasma mass spectrometry (LA–ICP–MS) U–Pb zircon dating of comagmatic anorthosite yields a crystallization age of 259.77 ± 0.79 million years, coeval with the Emeishan flood basalts. Recently, we identified a small wehrlite dike in microgabbroic rocks and marbles. The wehrlite consists of high-Mg olivine phenocrysts with up to 90.44 wt.% Fo. Incompatible element-normalized patterns between bulk wehrlite and clinopyroxenes in gabbro suggest that they are cogenetic. The Panzhihua parental magma is estimated to have been picritic (∼10 wt.% FeO and ∼16 wt.% MgO), produced by partial fusion of garnet peridotite. Much of the melting occurred in garnet-facies mantle at an initial melting temperature of about 1530°C and pressure of ∼3.4 GPa, suggesting involvement of a mantle plume. The degree of partial melting was rather modest and could have been generated by plume–lithosphere interaction or ascending plume-derived melting contaminated by lithospheric mantle. Field relationships show sharp contacts between the massive ores and gabbro, between wehrlite and fine-grained gabbro, and between disseminated ores and gabbro. Considering the entire intrusion, which is locally cut by dikes or veins of anorthosite, together with the occurrence of a breccia made up of gabbro clasts cemented by disseminated ores, we suggest that different types of magmas were generated by liquid differentiation in a deeper-level chamber. This differentiation could have resulted from double-diffusive convection cells, with melt later intruding into a higher-level chamber, rather than by crystal settling or in situ growth on the floor of the intrusion. However, rhythmic layering produced by in situ crystallization only occurs in the middle of the Panzhihua intrusion and was caused by periodic fluctuation in water pressure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.