Abstract

A detailed investigation of the spin-lattice relaxation time, T1, for 207Pb in solid lead nitrate has been undertaken in an effort to understand the mechanism of relaxation. The results show that the 207Pb T1 is independent of magnetic field strength and inversely proportional to the square of the temperature. These are signatures of relaxation by a spin-phonon Raman scattering mechanism. Nuclear spin-lattice relaxation in solid lead salts is more efficient for sites with smaller magnetic shielding anisotropy. A coupling mechanism is proposed whereby phonons create a local magnetic field by modulating the valence electron shell motion relative to the nuclear/electron core. Literature data suggest that spin-phonon scattering is a common relaxation pathway for other spin-1/2 heavy nuclei in solids.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call