Abstract

Nonexponential spin-lattice relaxation is often observed for rare spin nuclei in the solid state. Deviation from single-component decay may be amplified by the coupling of rare spin nuclei to paramagnetic centers. Nonexponential spin-lattice relaxation was observed in derivatized silica gels resins. This phenomenon was localized and enhanced when paramagnetic transition metal cations were bound to surface functional groups. A stretched exponential analysis method was determined to be robust in fitting nonexponential relaxation curves for silica gels both with and without bound paramagnetic ions. Spin-lattice relaxation rates ( T 1 −1) for functional group nuclei increased as a function of percent surface coverage with metal ion. The magnitude of the relaxation rate increase was dependent upon internuclear distances from the paramagnetic center. At low surface coverages, a semi-random distribution of paramagnetic centers increased the degree of stretching of spin-lattice relaxation decays, as measured by decreases in the calculated stretching parameter β. At higher surface coverages, calculated β values reached a limiting value, indicating that while the spin-diffusion mechanism in metal-ex-changed silica gels is restricted, it is not completely diminished.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call