Abstract
A steady state, multivariable, and nonlinear measure is presented for assessing the input-output, open-loop controllability of a process. This measure is ascertaining the inherent controllability of the process, as it is calculated in the absence of any regulatory control structure. It is also independent of the inventory control structure that might be assumed present in order to keep the inventory levels constant. This measure evaluates the ability of a design to reach all points of the desired output space and to reject the expected disturbances utilizing input action not exceeding the available input space. Besides being applicable to a SISO case, its multivariable character is shown to be more accurate than existing measures such as RGA, minimum singular value, and condition number.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have