Abstract
In an underground inductive power transfer (IPT), it is inevitable to produce the phenomenon of misalignment between the transmitter and the receiver, which will reduce the output current, voltage and output efficiency of the whole IPT system. Aiming to solve this problem, a universal hybrid coupler is proposed, which can still stabilize the output in the expected range and has the ability of anti-misalignment when the X and Z directions are misaligned. The coupler is composed of a BP coupler and Γ type network. The secondary edge of the coupler introduces a Γ network, which decouples the two main coils on the same side of the receiver from the auxiliary coil and reduces the complexity of the system. The coupler can effectively reduce the coupling fluctuation caused by physical movement between the downhole transmitting end and the receiving end, thereby ensuring the stable output of the coupler. As a widely used IPT system, it can access the rest of the circuit topology whose output is independent of the load and achieve misalignment-tolerant output. Finally, based on the proposed hybrid IPT coupler theory, a 500 W misalignment-tolerant coupler prototype was built, and the compensation topologies were configured as series–series (SS) and series/inductance/capacitance/capacitor (S/LCC) structures. When the X and Z direction is misaligned, the constant current and voltage independent of the load can be output by switching the compensation topology. The experimental results are the same as the theoretical analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.